var dataMap = {}; function dataFormatter(obj) { var pList = ['天津', '河北', '辽宁', '上海', '江苏', '浙江', '福建', '山东', '广东', '广西 ', '海 南']; var temp; for (var year = 2011; year <= 2015; year++) { var max = 0; var sum = 0; temp = obj[year]; for (var i = 0, l = temp.length; i < l; i++) { max = Math.max(max, temp[i]); sum += temp[i]; obj[year][i] = { name: pList[i], value: temp[i] } } obj[year + 'max'] = Math.floor(max / 100) * 100; obj[year + 'sum'] = sum; } return obj; } dataMap.dataGDP = dataFormatter({ //max : 60000, 2015: [0, 4, 4, 1, 7, 10, 11, 5, 8, 1, 5], 2014: [0, 6, 4, 1, 8, 10, 11, 6, 10, 1, 5], 2013: [0, 6, 4, 1, 8, 11, 11, 6, 10, 1, 5], 2012: [0, 6, 4, 1, 8, 11, 11, 6, 11, 1, 5], 2011: [0, 6, 4, 1, 8, 11, 11, 6, 11, 1, 5], }); dataMap.dataPI = dataFormatter({ //max : 4000, 2015: [1, 6, 12, 4, 5, 15, 14, 18, 31, 6, 7], 2014: [0, 4, 11, 4, 3, 16, 15, 16, 40, 6, 4], 2013: [1, 4, 11, 4, 3, 14, 15, 16, 40, 6, 4], 2012: [0, 1, 7, 0, 4, 10, 8, 14, 6, 1, 5], 2011: [1, 4, 11, 4, 3, 14, 15, 17, 39, 6, 3], }); dataMap.dataSI = dataFormatter({ //max : 26600, 2015: [0, 1, 6, 3, 9, 8, 12, 7, 1, 0, 4], 2014: [0, 1, 7, 0, 4, 9, 8, 13, 6, 1, 5], 2013: [0, 1, 7, 0, 4, 10, 8, 13, 6, 1, 5], 2012: [1, 4, 11, 4, 3, 14, 15, 17, 39, 6, 3], 2011: [0, 1, 7, 0, 4, 10, 8, 14, 6, 1, 5], }); dataMap.dataTI = dataFormatter({ //max : 25000, 2015: [0, 1, 6, 3, 9, 8, 12, 7, 1, 0, 4], 2014: [0, 1, 7, 0, 4, 9, 8, 13, 6, 1, 5], 2013: [0, 1, 7, 0, 4, 10, 8, 13, 6, 1, 5], 2012: [1, 4, 11, 4, 3, 14, 15, 17, 39, 6, 3], 2011: [0, 1, 7, 0, 4, 10, 8, 14, 6, 1, 5], }); dataMap.dataEstate = dataFormatter({ //max : 3600, 2015: [1074.93, 411.46, 918.02, 224.91, 384.76, 876.12, 238.61, 492.1, 1019.68, 2747.89, 1677.13, 634.92, 911.16, 402.51, 1838.14, 987, 634.67, 518.04, 3321.31, 465.68, 208.71, 396.28, 620.62, 160.3, 222.31, 17.44, 398.03, 134.25, 29.05, 79.01, 176.22], 2014: [1006.52, 377.59, 697.79, 192, 309.25, 733.37, 212.32, 391.89, 1002.5, 2600.95, 1618.17, 532.17, 679.03, 340.56, 1622.15, 773.23, 564.41, 464.21, 2813.95, 405.79, 188.33, 266.38, 558.56, 139.64, 223.45, 14.54, 315.95, 110.02, 25.41, 60.53, 143.44], 2013: [1062.47, 308.73, 612.4, 173.31, 286.65, 605.27, 200.14, 301.18, 1237.56, 2025.39, 1316.84, 497.94, 656.61, 305.9, 1329.59, 622.98, 546.11, 400.11, 2470.63, 348.98, 121.76, 229.09, 548.14, 136.15, 205.14, 13.28, 239.92, 101.37, 23.05, 47.56, 115.23], 2012: [844.59, 227.88, 513.81, 166.04, 273.3, 500.81, 182.7, 244.47, 939.34, 1626.13, 1052.03, 431.27, 506.98, 281.96, 1104.95, 512.42, 526.88, 340.07, 2057.45, 282.96, 95.6, 191.21, 453.63, 104.81, 195.48, 15.08, 193.27, 93.8, 19.96, 38.85, 89.79], 2011: [821.5, 183.44, 467.97, 134.12, 191.01, 410.43, 153.03, 225.81, 958.06, 1365.71, 981.42, 366.57, 511.5, 225.96, 953.69, 447.44, 409.65, 301.8, 2029.77, 239.45, 67.19, 196.06, 376.84, 93.19, 193.59, 13.24, 153.98, 83.52, 16.98, 29.49, 91.28], }); dataMap.dataFinancial = dataFormatter({ //max : 3200, 2015: [2215.41, 756.5, 746.01, 519.32, 447.46, 755.57, 207.65, 370.78, 2277.4, 2600.11, 2730.29, 503.85, 862.41, 357.44, 1640.41, 868.2, 674.57, 501.09, 2916.13, 445.37, 105.24, 704.66, 868.15, 297.27, 456.23, 31.7, 432.11, 145.05, 62.56, 134.18, 288.77], 2014: [1863.61, 572.99, 615.42, 448.3, 346.44, 639.27, 190.12, 304.59, 1950.96, 2105.92, 2326.58, 396.17, 767.58, 241.49, 1361.45, 697.68, 561.27, 463.16, 2658.76, 384.53, 78.12, 496.56, 654.7, 231.51, 375.08, 27.08, 384.75, 100.54, 54.53, 97.87, 225.2], 2013: [1603.63, 461.2, 525.67, 361.64, 291.1, 560.2, 180.83, 227.54, 1804.28, 1596.98, 1899.33, 359.6, 612.2, 165.1, 1044.9, 499.92, 479.11, 402.57, 2283.29, 336.82, 65.73, 389.97, 524.63, 194.44, 351.74, 23.17, 336.21, 88.27, 45.63, 75.54, 198.87], 2012: [1519.19, 368.1, 420.74, 290.91, 219.09, 455.07, 147.24, 177.43, 1414.21, 1298.48, 1653.45, 313.81, 497.65, 130.57, 880.28, 413.83, 393.05, 334.32, 1972.4, 249.01, 47.33, 303.01, 411.14, 151.55, 277.66, 22.42, 287.16, 72.49, 36.54, 64.8, 171.97], 2011: [1302.77, 288.17, 347.65, 218.73, 148.3, 386.34, 126.03, 155.48, 1209.08, 1054.25, 1251.43, 223.85, 385.84, 101.34, 734.9, 302.31, 337.27, 260.14, 1705.08, 190.73, 34.43, 247.46, 359.11, 122.25, 168.55, 11.51, 231.03, 61.6, 27.67, 51.05, 149.22], }); option = { baseOption: { timeline: { // y: 0, axisType: 'category', // realtime: false, // loop: false, autoPlay: true, // currentIndex: 2, playInterval: 1000, // controlStyle: { // position: 'left' // }, data: [ '2011-01-01', '2012-01-01', '2013-01-01', '2014-01-01', '2015-01-01', { value: '2015-01-01', tooltip: { formatter: function(params) { return params.name + ' 注: 沿海地带中未包括广东省的东莞、中山和海南的三沙、儋州。'; } }, symbol: 'diamond', symbolSize: 18 }, ], label: { formatter: function(s) { return (new Date(s)).getFullYear(); } } }, title: { subtext: '数据来自国家海洋局信息中心' }, tooltip: {}, legend: { x: 'right', data: ['县', '县级市', '区'], selected: { 'GDP': false, '金融': false, '房地产': false } }, calculable: true, grid: { top: 80, bottom: 100 }, xAxis: [{ 'type': 'category', 'axisLabel': { 'interval': 0 }, 'data': [ '天津', '河北', '辽宁', '上海', '江苏', '浙江', '福建', '山东', '广东', '广西 ', '海 南' ], splitLine: { show: true } }], yAxis: [{ type: 'value', name: '单位:个', // max: 53500 max: 100 }], series: [{ name: 'GDP', type: 'bar' }, { name: '金融', type: 'bar' }, { name: '房地产', type: 'bar' }, { name: '县', type: 'bar' }, { name: '县级市', type: 'bar' }, { name: '区', type: 'bar' }, { name: '合计', type: 'pie', center: ['75%', '35%'], radius: '28%' }], toolbox: { show: true, orient: 'vertical', x: 'right', y: 'center', feature: { dataZoom: { yAxisIndex: 'none' }, dataView: { readOnly: false }, magicType: { type: ['line', 'bar'] }, restore: {}, saveAsImage: {} } }, }, options: [ { title: { text: '2015年沿海地区行政区划' }, series: [{ data: dataMap.dataGDP['2011'] }, { data: dataMap.dataFinancial['2011'] }, { data: dataMap.dataEstate['2011'] }, { data: dataMap.dataPI['2011'] }, { data: dataMap.dataSI['2011'] }, { data: dataMap.dataTI['2011'] }, { data: [{ name: '县', value: dataMap.dataPI['2011sum'] }, { name: '县级市', value: dataMap.dataSI['2011sum'] }, { name: '区', value: dataMap.dataTI['2011sum'] }] }] }, { title: { text: '2014年沿海地区行政区划' }, series: [{ data: dataMap.dataGDP['2012'] }, { data: dataMap.dataFinancial['2012'] }, { data: dataMap.dataEstate['2012'] }, { data: dataMap.dataPI['2012'] }, { data: dataMap.dataSI['2012'] }, { data: dataMap.dataTI['2012'] }, { data: [{ name: '县', value: dataMap.dataPI['2012sum'] }, { name: '县级市', value: dataMap.dataSI['2012sum'] }, { name: '区', value: dataMap.dataTI['2012sum'] }] }] }, { title: { text: '2013年沿海地区行政区划' }, series: [{ data: dataMap.dataGDP['2013'] }, { data: dataMap.dataFinancial['2013'] }, { data: dataMap.dataEstate['2013'] }, { data: dataMap.dataPI['2013'] }, { data: dataMap.dataSI['2013'] }, { data: dataMap.dataTI['2013'] }, { data: [{ name: '县', value: dataMap.dataPI['2013sum'] }, { name: '县级市', value: dataMap.dataSI['2013sum'] }, { name: '区', value: dataMap.dataTI['2013sum'] }] }] }, { title: { text: '2012年沿海地区行政区划' }, series: [{ data: dataMap.dataGDP['2014'] }, { data: dataMap.dataFinancial['2014'] }, { data: dataMap.dataEstate['2014'] }, { data: dataMap.dataPI['2014'] }, { data: dataMap.dataSI['2014'] }, { data: dataMap.dataTI['2014'] }, { data: [{ name: '县', value: dataMap.dataPI['2014sum'] }, { name: '县级市', value: dataMap.dataSI['2014sum'] }, { name: '区', value: dataMap.dataTI['2014sum'] }] }] }, { title: { text: '2011年沿海地区行政区划' }, series: [{ data: dataMap.dataGDP['2015'] }, { data: dataMap.dataFinancial['2015'] }, { data: dataMap.dataEstate['2015'] }, { data: dataMap.dataPI['2015'] }, { data: dataMap.dataSI['2015'] }, { data: dataMap.dataTI['2015'] }, { data: [{ name: '县', value: dataMap.dataPI['2015sum'] }, { name: '县级市', value: dataMap.dataSI['2015sum'] }, { name: '区', value: dataMap.dataTI['2015sum'] }] }] } ] };